44 2033180199

Möbius and simple loop strips as 2D topological spacetime structures of preonic fermions and bosons

Jau Tang, Brian Tang, Qiang Tang

This work presents a model to treat the relativistic quantum dynamics of particles in a 2D Minkowski spacetime. Using independent 2x2 real-value matrices to represent a time-shift operator E, a space-shift operator P, and a mass operator M, we first derive and show these exist only two types of operator equations, representing a bosonic preon for the symmetric type-I case with commutative E and P, and a fermionic preon for the anti-symmetric type-II case with an anti-commutative relation. We illustrate their topological differences and show that the wave during propagation of the type-II preon as a Weyl-fermion exhibits a twist like a Mobius strip. In contrast, the type-I bosonic preon behaves like a simple loop strip without a twist. We have also examined the case with a rest mass for a 2D particle and a Dirac particle in 4D. Unlike the conventional string theories, our model consists of two fundamental structures, a Mobius-strip fermionic preon, and a simple-loop bosonic preon. These two topological preonic structures can be used as the most fundamental building blocks for constructing elementary particles of higher dimensions.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।
 
संघों, समाजों और विश्वविद्यालयों के लिए सहकर्मी समीक्षा प्रकाशन pulsus-health-tech
Top