44 2033180199

Dominating Sets and Domination Polynomials of Cubic Paths

Audin Medona, S. Christilda

Let G = (V, E) be a simple graph. A set SV ⊆ is a dominating set of G, if every vertex in V – S is adjacent to at least one vertex in S. Let 3 Pn be the cubic path nP and let ( ) 3 n D P , i denote the family of all dominating sets of 3 Pn with cardinality i. Let ( ) 3, n d P i= | ( ) 3 n D P , i |. In this paper, we obtain a recursive formula for 3 n d(P ,i). Using this recursive formula, we construct the polynomial =   = ∑ n 3 3i nn i ni 7 (P ) d(P , D,ixi)x which we call the domination polynomial of Pn3 and obtain some properties of this polynomial.

अस्वीकृति: इस सारांश का अनुवाद कृत्रिम बुद्धिमत्ता उपकरणों का उपयोग करके किया गया है और इसे अभी तक समीक्षा या सत्यापित नहीं किया गया है।
 
संघों, समाजों और विश्वविद्यालयों के लिए सहकर्मी समीक्षा प्रकाशन pulsus-health-tech
Top